Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid.
نویسندگان
چکیده
Eicosapentaenoic acid (EPA, C20:5, omega-3) is the most abundant polyunsaturated fatty acid (PUFA) in fish oil. Recent studies suggest that the beneficial effects of fish oil are due, in part, to the generation of various free radical-generated non-enzymatic bioactive oxidation products from omega-3 PUFAs, although the specific molecular species responsible for these effects have not been identified. Our research group has previously reported that pro-inflammatory prostaglandin F2-like compounds, termed F2-isoprostanes (IsoPs), are produced in vivo by the free radical-catalyzed peroxidation of arachidonic acid and represent one of the major products resulting from the oxidation of this PUFA. Based on these observations, we questioned whether F2-IsoP-like compounds (F3-IsoPs) are formed from the oxidation of EPA in vivo. Oxidation of EPA in vitro yielded a series of compounds that were structurally established to be F3-IsoPs using a number of chemical and mass spectrometric approaches. The amounts formed were extremely large (up to 8.7 + 1.0 microg/mg EPA) and greater than levels of F2-IsoPs generated from arachidonic acid. We then examined the formation of F3-IsoPs in vivo in mice. Levels of F3-IsoPs in tissues such as heart are virtually undetectable at baseline, but supplementation of animals with EPA markedly increases quantities up to 27.4 + 5.6 ng/g of heart. Interestingly, EPA supplementation also markedly reduced levels of pro-inflammatory arachidonate-derived F2-IsoPs by up to 64% (p < 0.05). Our studies provide the first evidence that identify F3-IsoPs as novel oxidation products of EPA that are generated in vivo. Further understanding of the biological consequences of F3-IsoP formation may provide valuable insights into the cardioprotective mechanism of EPA.
منابع مشابه
Isoprostanes.
The isoprostanes (IsoPs) are a unique series of prostaglandin-like compounds formed in vivo via a nonenzymatic mechanism involving the free radical-initiated peroxidation of arachidonic acid. This article summarizes our current knowledge of these compounds. Herein, a historical account of their discovery and the mechanism of their formation are described. A specific class of IsoPs, the F2-IsoPs...
متن کاملFormation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid.
Omega-3 (omega-3) polyunsaturated fatty acids (PUFAs) found in marine fish oils are known to suppress inflammation associated with a wide variety of diseases. Eicosapentaenoic acid (EPA) is one of the most abundant omega-3 fatty acids in fish oil, but the mechanism(s) by which EPA exerts its beneficial effects is unknown. Recent studies, however, have demonstrated that oxidized EPA, rather than...
متن کاملFormation of highly reactive A-ring and J-ring isoprostane-like compounds (A4/J4-neuroprostanes) in vivo from docosahexaenoic acid.
Free radical-initiated oxidant injury and lipid peroxidation have been implicated in a number of neural disorders. Docosahexaenoic acid is the most abundant unsaturated fatty acid in the central nervous system. We have shown previously that this 22-carbon fatty acid can yield, upon oxidation, isoprostane-like compounds termed neuroprostanes, with E/D-type prostane rings (E(4)/D(4)-neuroprostane...
متن کاملGeneration of the isoprostane 8-epi-prostaglandin F2alpha in vitro and in vivo via the cyclooxygenases.
F2-isoprostanes are isomers of the prostaglandin PGF2alpha. At least one compound of this group, 8-epi-PGF2alpha, exhibits biological activity, and therefore special interest is focused on the mechanism of isoprostane formation: enzyme catalyzed or radical mediated. We analyzed the formation of isoprostanes in vitro and in vivo. In both systems, purified cyclooxygenase isoenzymes and cell model...
متن کاملGeneration of the Isoprostane 8-Epi-prostaglandin F2a In Vitro and In Vivo via the Cyclooxygenases
F2-Isoprostanes are isomers of the prostaglandin PGF2a. At least one compound of this group, 8-epi-PGF2a, exhibits biological activity, and therefore special interest is focused on the mechanism of isoprostane formation: enzyme catalyzed or radical mediated. We analyzed the formation of isoprostanes in vitro and in vivo. In both systems, purified cyclooxygenase isoenzymes and cell models specif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 281 20 شماره
صفحات -
تاریخ انتشار 2006